Mathematics Methods

Unit 3 & 4

Random variables

1. Random variables

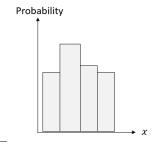
Definition: A variable whose possible values are outcomes of a random phenomenon

(a) Discrete random variable

Definition: a variable whose values (countable values) are obtained by counting

Example:

- Number of cats in SPCA
- Number of marbles in a jar
- Number of staffs in an office



(i) Probability distribution

Definition: is a list of all of the possible outcomes of a random variable along with their corresponding probability.

Probability distribution properties (characteristics):

- Probabilities for each value of *X* lies in the interval of $0 \le P(X = x) \le 1$
- Sum (total) of the probabilities is 1

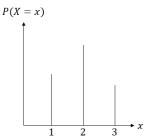
(x can be negative but P(X = x) cannot be negative)

Probability distribution (discrete random variable) can be given by:

Table form

x				
P(X = x)				

Graphical form



Function form

$$P(x) = P(X = x)$$

Probability of a discrete random variable by choosing with replacement

$$P(X = x) = {}^{n}C_{r}(p)^{r}(1-p)^{n-r}$$

Example:

A bag of chips contains 4 red and 2 blue chips. Three chips are drawn randomly without replacement. Draw a probability distribution for *X*: number of blue chips drawn.

Probability of a discrete random variable by choosing without replacement

$$P(X = x) = \frac{{^{n_1}C_r}^{n_2}C_{n-r}}{{^{n_1+n_2}C_n}}$$

Example:

A bag of marbles contains 4 yellow-green and 3 blue-magenta marbles. Three marbles are drawn randomly without replacement. Draw a probability distribution for X: number of yellow-green marble.

(ii) Interval of values

Interval of values which the variable take is considered in discrete random variable.

Examples:

P(X = 1): the probability that X is equivalent to 1

P(X > 1): the probability that X is more than 1

 $P(X \ge 1)$: the probability that X is 1 and above

P(X < 1): the probability that X is less than 1

 $P(X \le 1)$: the probability that X is 1 and below

P(1 < X < 5): the probability that X is between 1 and 5

 $P(1 \le X \le 5)$: the probability that X is at least 1 and no more than 5

 $P(1 < X \le 5)$: the probability that X is more than 1 and no more than 5

 $P(1 \le X < 5)$: the probability that X is at least 1 and less than 5

 $P(X \le 5 | X \ge 1)$: the probability that there is 5 and below given that there is at least 1..

(iii) Expected value/ mean of X

Theoretical method

$$E(X) = \sum x \times P(X = x)$$

Example:

Calculate the expected value of *X* from the given table below.

x	0	1	2	3
P(X = x)	3	7	5	5
	$\overline{20}$	$\overline{20}$	$\overline{20}$	$\overline{20}$

Experimental method

$$\bar{x} = \frac{\sum fx}{\sum f}$$

Example:

Calculate the mean score below.

х	0	1	2	3
Frequency	3	7	5	5

Application problem of expected value/ mean

Example:

At a school carnival, Linda is in charge of operating a game stall. The table below shows the prize offered per attempt and its respective probability.

Prize	\$20	\$5	\$1
Probability	0.001	0.01	0.5

Find

• The expected profit per game for Linda if each game cost \$1.

- A customer played the game and paid \$3, find his expected profit/loss.
- How much Linda charge per game if she made a profit of \$200 from 150 games?

(iv) Variance

Formulas:

$$Var(X) = \sum (x - \mu)^2 \times P(X = x)$$

Or

$$Var(X) = E(X^2) - [E(X)]^2$$

Example:

х	0	1	2	3	
P(X=x)	0.4	0.3	0.1	0.2	

Calculate the variance from the probability distribution above.

(v) Standard deviation

Formula:

$$Std(X) = \sqrt{Var(X)}$$

Example:

x	0	1	2	3
P(X=x)	0.4	0.3	0.1	0.2

Calculate the standard deviation from the probability distribution above.

(vi) Effect of $\times a$ and +b

Expected value,

$$E(aX + b) = aE(X) + b$$

Variance

$$Var(aX + b) = a^2 Var(X)$$

Standard deviation

$$\sqrt{Var(aX + b)} = \sqrt{a^2 Var(X)}$$
$$= |a|\sqrt{Var(X)}$$

Example 1:

A spinning wheel has four equal sections. Each section states the prize won by a contestant namely \$1, \$2 and \$3 If the pay-out is changed to \$0, \$2 and \$4, find the expected value after the change by first determining the expected value of the original prize to be given and then determine a linear rule Y = aX + b to determine the new expected value.

Example 2:

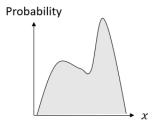
Find $E[(4X-3)]^2$ given that $E(X)=\frac{1}{2}$ and $E(X^2)=\frac{5}{10}$

(b) Continuous random variable

Definition: a variable which takes any values over intervals and whose values (measurable values) are obtained by measuring.

Example:

- Weight of elephants in the national zoo
- Height of green been seedlings after a week
- Diameter of skull



*any graph that has a region enclosed under it

(i) **Probability density function**

Definition: Probability density function is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.

- Probability density function (characteristics):

 Sum (total) of the probabilities is 1: $\int_b^a f(x) \ dx = 1$

 - $f(x) \ge 0$ for interval $a \le x \le b$ P(X = k) = 0 which is same as $\int_{k}^{k} f(x) dx = 0$
 - $P(X \le k) = P(X < k) + P(X = k)$ = P(X < k)

Finding probability density function given a cumulative distribution function

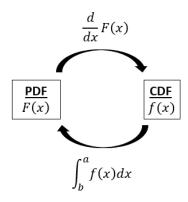
$$f(x) = \frac{d}{dx}F(x)$$

(ii) Cumulative distribution function

Definition: Cumulative distribution function expresses the probability that X does not exceed the value of x.

$$F(x) = P(X \le x)$$
$$= \int_{-\infty}^{x} f(x) dx$$

(iii) PDF and CDF



Example:

The probability density function f of a continuous random variable T is given by,

fity function
$$f$$
 of a continuous random variable
$$\frac{1}{24}t \qquad 0 \leq t \leq 4$$

$$\frac{1}{4} - \frac{1}{48}t \qquad 4 \leq t \leq 12$$
 Otherwise

• Find the cumulative distribution function for *T*.

• Find P(3 < T < 12).

(iv) Expected value/ mean of X

$$E(X) = \int_{a}^{b} x \times f(x) \, dx$$

Example:

Random variable X has a probability function of $f(x) = \frac{e^x}{2}$ for $0 \le x \le \ln 3$.

Determine the mean for *X*.

(v) Variance

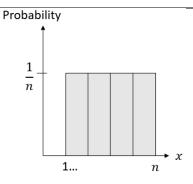
$$Var(X) = \int_{a}^{b} x^{2} \times f(x) dx - [E(X)]^{2}$$

Example:

Random variable X has a probability function of f(x) = 2x for $0 \le x \le 1$. Determine the variance for X.

3. Uniform distribution

(a) Discrete uniform distribution



Discrete uniform variable properties (characteristics):

• n values in the range has equal probability $\frac{1}{n}$ (the probability of uniformly spaced possible values is equal)

Probability mass function:

$$P(X = x) = \frac{1}{n}$$
 for $x = 1,2,3,4...,n$

Notation:

$$X \sim U\{a, b\}$$

(i) | Mean/ expected value

Formula:

$$E(X) = \frac{n+1}{2}$$

Derivation of formula:

$$E(X) = \sum x \ P(X = x)$$

$$= 1\left(\frac{1}{n}\right) + 2\left(\frac{1}{n}\right) + 3\left(\frac{1}{n}\right) + 4\left(\frac{1}{n}\right) + \dots + n\left(\frac{1}{n}\right) *$$

$$= \frac{1+n}{2}$$

$$*S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} \left[2\left(\frac{1}{n}\right) + (n-1)\left(\frac{1}{n}\right) \right]$$

$$= \frac{n}{2} \left[\frac{2+n-1}{n} \right]$$

$$= \frac{n+n^2}{2n}$$

$$= \frac{1+n}{2}$$

Example 1:

Given that a fair die is rolled and let Z implies that a number appears on the face of the die. Find the mean of Z.

Example 2:

Given that a discrete uniform variable is given by $U\{1,7\}$ and that $P(X=x)=\frac{1}{7}$. Find the value of the mean.

(ii) Variance

Formula:

$$Var(X) = \frac{n^2 - 1}{12}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} *$$

$$= \frac{(n+1)(2n+1)}{6} - (\frac{1+n}{2})^{2}$$

$$= \frac{2n^{2} + n + 2n + 1}{6} - (\frac{n^{2} + 2n + 1}{4})$$

$$= \frac{4n^{2} + 6n + 2 - (3n^{2} + 6n + 3)}{12}$$

$$= \frac{n^{2} - 1}{12}$$

$$*E(X^{2}) = \sum x^{2} \times P(X = x)$$

$$= 1^{2} \left(\frac{1}{n}\right) + 2^{2} \left(\frac{1}{n}\right) + 3^{2} \left(\frac{1}{n}\right) + 4^{2} \left(\frac{1}{n}\right) + \dots + n^{2} \left(\frac{1}{n}\right)$$

$$= \frac{1}{n} [1^{2} + 2^{2} + 3^{2} + 4^{2}]$$

$$= \frac{1}{n} \left[\frac{n(n+1)(2n+1)}{6}\right]$$

$$= \frac{(n+1)(2n+1)}{6}$$

$$[E(X)]^2 = (\frac{1+n}{2})^2$$

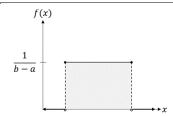
Example 1

Suppose that a discrete uniform variable is given by $U\{1,7\}$. Find the value of the variance.

Example 2:

k and h each has a discrete distribution which is uniform for the integers 1,2,3,4, ... n. Show that $Var(k) + Var(h) = \frac{n^2-1}{6}$.

(b) Continuous uniform distribution



Probability density function:

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Notation:

$$X \sim U(a, b)$$
 if $a < x < b$
 $X \sim U[a, b]$ if $a \le x \le b$

(i) Mean/ expected value

Formula:

$$E(X) = \frac{a+b}{2}$$

Derivation of formula:

$$E(X) = \int_{a}^{b} x \left(\frac{1}{b-a}\right) dx$$

$$= \left[\frac{x^2}{2(b-a)}\right]_{a}^{b}$$

$$= \frac{b^2}{2(b-a)} - \frac{a^2}{2(b-a)}$$

$$= \frac{b^2 - a^2}{2(b-a)}$$

$$= \frac{(b+a)(b-a)}{2(b-a)}$$

$$= \frac{a+b}{2}$$

Example 1:

A continuous random variable X is uniformly distributed in the interval $2 \le x \le 10$. Find E(X).

Example 2:

The radius of a circle drawn, R can be any value between 5.5cm and 7.5cm. State the mean for R.

(ii) Variance

Formula:

$$Var(X) = \frac{(b-a)^2}{12}$$

Derivation of formula:

$$Var(X) = \int_{a}^{b} x^{2} \left(\frac{1}{b-a}\right) dx - \left(\frac{a+b}{2}\right)^{2}$$

$$= \left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b} - \frac{(a+b)^{2}}{4}$$

$$= \frac{b^{3}}{3(b-a)} - \frac{a^{3}}{3(b-a)} - \frac{(a+b)^{2}}{4}$$

$$= \frac{b^{3} - a^{3}}{3(b-a)} - \frac{(a+b)^{2}}{4}$$

$$= \frac{(b-a)(b^{2} + ba + a^{2})}{3(b-a)} - \frac{a^{2} + 2ab + b^{2}}{4}$$

$$= \frac{(b^{2} + ba + a^{2})}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$

$$= \frac{4(b^{2} + ba + a^{2})}{12} - \frac{3(a^{2} + 2ab + b^{2})}{12}$$

$$= \frac{a^{2} - 2ab + b^{2}}{12}$$

$$= \frac{(b-a)^{2}}{12}$$

Example 1:

A continuous random variable X is uniformly distributed in the interval $84 \le x \le 90$. Find Var(X).

Example 2:

The speed of cars on the road, V can be any values in the interval, $30 \le V \le 80$. Find the variance of V.

(iii) Cumulative density function

Formula:

$$P(X \le x) = \frac{x - a}{b - a}$$

Derivation of formula:

$$P(X \le x) = \int_{a}^{x} \left(\frac{1}{b-a}\right) dx$$
$$= \left[\frac{x}{b-a}\right]_{a}^{x}$$
$$= \frac{x}{b-a} - \frac{a}{b-a}$$
$$= \frac{x-a}{b-a}$$

END